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Abstract .
A path integral method is used to study the time evolution of a three-dimensional time-
dependent system. The propagator for a charged particle in a time-dependent magnetic field
and quadrupolar electric potential is obtained.

The study of the time evolution of the time-dependent systems has long been of inter-
est. The systems with the time-dependent Hamiltonians were investigated through various
methods.l1=8] The recent discovery of quantum Hall effect and high-T. superconductivity has
stimulated the interest of studying quantum mechanics of nonrelativistic particle moving in
magnetic fields."=1% Using the (-function method, Farina and Gamboal!% obtained the prop-
agator for a harmonically bound charged particle in a constant magnetic field. More recently,
Gheorghe and Vedel!!] studied the time evolution of an ion in a trap with a constant magnetic
field and a quadrupolar electric potential. In Refs (7] and [8], a path integral method was ap-
plied to the study of a one-dimensional system. In this paper, the method is generalized and
used to study the time evolution of a three-dimensional time-dependent system. We find the
exact propagator for a charged particle in a time-dependent magnetic field and quadrupolar
electric potential. As the magnetic field becomes time-independent, the result obtained in the
present paper is in agreement with that of Refs [10] and [11].

The Hamiltonian for a charged particle in a time-dependent magnetic field B(t) = B(t)és
(é3 is unit vector for 3-axis) and a quadrupolar electric potential ¢(Z,t) = A(t)(z} + =3 — 223)
is

[F— ¢B(t) x & B
H) = ——F——— 1),
R ()
3 3
where & = eré_,- is the coordinate and 7 = Zp_,-é,- is the momentum of a particle with
j=1 i=1

charge ¢ and mass m. As the magnetic field becomes time-independent, the Hamiltonian (1)
reduces to the Hamiltonian in Ref. [11]. The Hamiltonian (1) can be rewritten as

H(t) = Hi\(t) + Ha(2), (2)
where : s
m= B4 mels g - 220, ©
Hy(t) = P?z‘:'npg + mb(f)(m;f + f%) + “(i)(mp; — Z2p1) ’ (4)
_ —4qA(t)  ¢B(Y) _ —gB(1)
k= m am '’ s m
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In the canonical formulation of the path integrals, the propagator of the system can be ex-
pressed as

K(&y,ty;&5,t:) = Ki(zap,ty;xai, ti) Ka(Zay, Trg, by Toi, 214, 15)

= /ﬁijDpj exp{% /t! [ Za:Pj-ij - Hi(t) - Hz(t)]dt};
j=1 b=t

where z; = dz;/dt- (j = 1,2,3). Using the method in Refs [7] and [8], it is easy to obtain the
ropagator corresponding to the Hamiltonian H;(t)

R m 1/2 im (Vgx3, bzl
1&1($3f,tf;:l:3i,t,')= (—) exp[-z—g(ﬂ——z—ﬁ)]

(5)

2ih7r'rlv,~vf vy Vs (6)
ool (22 - 227
p 2hm \ vy v; !

where

ty
vi = u(ti), vy = v(ty), 1 :/ v 2(t)dt

and v(t) is the solution of the following equation
v(t) +a(t)v(t)=10. (M

We then try to find a transformation which can transform the system with Hamiltonian Ha(t)
into a two-dimensional free particle. Let us consider the following transformation which is the
generalization of the canonical transformation in Refs [7] and [8]

(z1,22,p1,02,t) — (Q1,Q2, P1, P2, 7),

z; = u(t)[Q1 cosa(t) — Qzsina(t)], 2 = u(t)[Qrsina(t) + Q2 cosa(t)],

= [Py cos a(t) — Pasin aft)] + mu(t)z, (8)
u(?) ’
_ [Pisina(t) + Py cos a(t)] + mu(t)z, . _dt
P = u(® BEEOR

where u(t) and a(t) are functions to be determined. From Egs (8), we can see clearly that the
transformation (1, s, p1,p2) — (Q1, @2, P1, P2) is nothing but a time-dependent canonical
transformation with the generating function

z1 Py cosa(t) — z1Pesina(t) + z2 Py sina(t) + z2P; cos a(t)

Fz(.’l,‘l,xz,PI;P%t): u(t)

v 9
u(t) ] z? + z3 ®)
u(t) 2
Using the discussion similar to that in Refs [7] and [8], we obtain the relation between the
measures

o]

Dz1Dx,Qp1 Dps = (uing) ' DQ1DQ,DPDP,, (10)
by making use of Eqs (8) and (10), the propagator Ko(z25,z15,8s;%2i,21i) can be rewritten
as
Ko tp Zor 21s.t:) = (wins) ™! ﬁ Y 2 2y — et (O 2,

2\T2f, T1y,tp5 L2, T1d, i) _(u,u]) €xp 5 [ufuf(Q2f+Q1j) ut“z(Q_zi‘*’ng)]
(11)

. Tf P2 P2
x / DQ:DQ,DP,DP, exp{% / [PlQ’l + PQ, — %} dr},
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where

and u(?) is the solution of the following equation
i(t) + b(t)u(t) = 0. (12)

From Eq. (11), it is easy to see that the propagator

g ) )
DuDQ>DPDP; exp = PQ1+ PQ, — Lt dr
h T 2m

is noting but that propagator for the two-dimensional free particle. Thus, we can get imme-
diately

i (b o (PP
/ DQ:DQ;DPDP; exp{ / | [PiQ1+ Pty — 2 dr}

= 21.7:::72 exp{;f::2 @iy ~ Qui)® +(Q2f — in)z]}, (13)

ty
Tz:—’/ u”?(t)dt,
ti

which leads to

K2(f52fyl'lf;tf‘;z%,l'li,ti) = (ﬁﬁm) ex {2h [ (zlf + zzf) - _(-"«‘n +$2:)]}

im 1 4 2 1 2 2
X exp{% [;%'(IU +x3) + ;?(xli +z3;)
(14)

| 2 1 qB(t)
- ———(u,‘u_f)(xllei + zzfa:gg)cos(/ti v dt)

+ '(‘u—iiT)’(llszi - :czfzn)sm(/:! gg;g—)dt)]} '

It is easy to check that the propagator
K(&,t5;%i,t:) = Ki(zag,ty; 23i,8:) Ko(ag, T1g, ty; Toi, 214, 1)

satisfies the Schrodinger equation
ih%]&’(ff,tf;fi,ti):ﬁ(t)K(fj,tf;fg,t,'), (15)

where H(t) is the quantum Hamiltonian corresponding to the classical Hamiltonian (1).
When w(t) = w, = eBg/m,a(t) = b(t) = wi, the system studied in the present paper
reduces to the system with Hamiltonian

H’:Z(Qp’ +E§-ﬁ)+(%)($wz—zzm), (16)
» 1

J=

which was discussed in Ref. [10]. It is straightforward to show that u(t) = v(t) = coswet
is a particular solution of Eqs (7) and (12). Therefore, the propagator corresponding to
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Hamiltonian (16) is
mug )3/2

K(zy,4:4:,0) = (2ih7rsinwot

tmw
X exp{(wo) [ctgwot(sz + :cgf + zgj + :z:f,- + :cgi + :cf;,.)

2 cos(wct/2) o
cos{w,t
T et (e

2sin{w,t/2

This result is in agreement with that obtained in Ref. [10].

As a concluding remark, it is worth while to emphasize that using the propagator obtained
in the present paper and the method used in Ref. [8], it is easy to construct the coherent states
for the system with Hamiltonian (1).
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